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A B S T R A C T

This paper addresses the problem of robust output regulation for uncertain nonlinear minimum phase systems
affected by an unknown external disturbance. We present a novel unknown input observer (UIO)-embedded
high-gain stabilizer to completely reconstruct the disturbance in a finite time. A new saturation function is
introduced to prevent finite time escape of the closed-loop trajectories. This allows us to achieve a semi-globally
exponential regulation of the regulated output. The proposed method features the exact cancellation rather
than approximate cancellation, for both structured and/or unstructured external disturbance. The presented
controller is finite-dimensional and does not require the nominal model of the plant. Finally, a numerical
experiment is conducted to demonstrate the effectiveness of the proposed method.
1. Introduction

The robust output regulation problem, namely having the output of
a system asymptotically tracking prescribed trajectories and rejecting
unwanted disturbances simultaneously, in the presence of parameter
uncertainties, has received everlasting attention in the control commu-
nity. Especially in complex practical problems, for instance, the attitude
control of a quadrotor (Yang, Cheng, Xia, & Yuan, 2017), active noise
control (Airimitoaie, Landau, Melendez, & Dugard, 2020; Kamaldar &
Hoagg, 2018) and flexible joint robot control (Psomopoulou, Theodor-
akopoulos, Doulgeri, & Rovithakis, 2015), etc., strong nonlinearities
and various uncertainties can be found ubiquitously. More importantly,
disturbances in the process industry are highly likely to be unmeasur-
able and unstructured. Hence, regardless of the great progress (Bernard,
Bin, & Marconi, 2020; Ran, Wang, & Dong, 2016; Serrani, Isidori, &
Marconi, 2001), providing alternative solutions with high performance
and capability of rapidly eliminating disturbances remains imperative
in both theoretical and engineering fields of control.

Existing techniques for disturbance rejection can be roughly cat-
egorized into robust control approaches and internal model (IM)-
based methods. The former, including disturbance observer (DOB)
control (Sariyildiz, Oboe, & Ohnishi, 2019), active disturbance rejec-
tion control (ADRC) (Han, 2009), extended high-gain observer-based
control (Freidovich & Khalil, 2008; Wang, Isidori, & Su, 2015), just
name a few, are capable of handling both structured and unstructured
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disturbances. In DOB, a key step is to design a Q-filter whose bandwidth
is crucial to robust stability, but is usually selected by trial and error. A
constructive method for the determination of the Q-filter’s bandwidth
has been recently developed in Chang, Kim, and Shim (2020), but
the systems considered in Chang et al. (2020), Shim and Jo (2009)
are restricted to be linear and minimum-phase. For nonlinear systems,
several nonlinear versions of DOB have been developed (Back & Shim,
2008; Ding, Chen, Mei, & Murray-Smith, 2019; Ha & Back, 2023).
Nevertheless, such a criterion of selecting Q-filter’s bandwidth is in-
appropriate in the nonlinear content. Besides, accurate information
about the nonlinear function of the plant model is demanded in Ding
et al. (2019). Alternatively, the ADRC technique becomes favorable in
practice due to its simplicity for implementation, however, the rigorous
theoretical proof of the stability analysis is nontrivial (Chi, Hui, Huang,
& Hou, 2021; Jiang, Huang, & Guo, 2015; Ran et al., 2016). Moreover,
one main drawback shared by all the aforementioned robust control
approaches is that the disturbance rejection is approximate (Back &
Shim, 2008; Chi et al., 2021; Ha & Back, 2023), which limits their
application in tasks requiring high precision.

Rather than approximate cancellation, the Internal Model Principle
provides a necessary condition for asymptotic cancellation, saying a
suitable model of the disturbance must be reduplicated in the closed-
loop systems (Francis & Wonham, 1976). This IM-based method is
feasible when the model or the parameter of the exogenous model is
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exactly known. Such an assumption, however, is rather impractical in
many real-world scenarios. To overcome this difficulty, an adaptive
identifier designed by Lyapunov-based method (Serrani et al., 2001) or
optimization method (Bernard et al., 2020; Bin, Marconi, & Teel, 2019)
for the internal model suffices to reduplicate the disturbance model.
However, the cancellation result is directly related to the performance
of the identifier. The nonzero identification error results in a residual
error between the disturbance model and internal model. Then, still
only approximate cancellation is achieved. Moreover, if unstructured
disturbances are considered, it is claimed in Bin, Astolfi, and Mar-
coni (2022) that for nonlinear systems, no finite-dimensional internal
model exists for asymptotic regulation. Regarding the disturbance as
an unknown input, the UIO technique, from a geometric perspective,
provides an alternative solution to exact cancellation, but it requires
complete knowledge of the systems (Alenezi, Zhang, Hui, & Żak, 2021;
Corless & Tu, 1998; Yang, Barboni, Rezaee, Serrani, & Parisini, 2022).

Inspired by the above discussions, a natural question arises: for
onlinear uncertain systems perturbed by possibly unstructured disturbances,
oes there exist a finite-dimensional regulator to achieve asymptotic can-
ellation of unstructured disturbances and meanwhile guarantee robust
tability? In this work, this question is positively answered for a class of
ncertain nonlinear SISO systems with arbitrary relative degrees. We
onsider the systems to be minimum-phase, and notably, the nonlin-
ar functions are completely unknown and state-dependent, which is
ore general than the nonlinearity output-dependent or with approxi-
ated expressions (bounding functions, constant bounds) (Cruz-Zavala,
oreno, & Nuño, 2022; Mercado-Uribe & Moreno, 2020; Sanchez &
oreno, 2021).

Our approach aligns with the DOB technique and ADRC meth-
ds (Chi et al., 2021; Ran et al., 2016; Sariyildiz et al., 2019), where
nstructured disturbances and uncertain dynamics are amalgamated as
lumped perturbation to be compensated. However, our subsequent

teps differ significantly. To precisely estimate this lumped uncertainty,
e initially transform the robust output regulation problem into an
nknown input observation problem through a meticulously crafted
oordinate change. Subsequently, we propose a novel UIO-based high-
ain control protocol. Specifically, we introduce a high-order sliding
ode (HOSM) differentiator to estimate the unmeasurable state, and

mploy a novel interval observer-based UIO as proposed in Zhu, Fu,
nd Dinh (2023) to achieve an exact estimation of the lumped un-
ertainty. Yet, compensating by directly substituting the estimated
umped uncertainty may lead to a finite-time escape of closed-loop
rajectories, causing instability. To mitigate this issue, we introduce a
ew saturation function in the control law. In this way, the attraction
egion of the augmented zero dynamics can be arbitrarily increased,
hich makes it possible to utilize a high-gain feedback combined with

ts estimate to preserve the closed-loop trajectories within a given for-
ard invariant set. By maintaining states within this set, all estimates
xhibit finite-time convergence due to the introduction of a series of
OSM differentiators. As a result, we achieve complete cancellation
f unstructured disturbances while ensuring demonstrable closed-loop
tability.

The main contributions of this paper are summarized as follows:

(i) A novel high-gain feedback law combined with an interval
observer-based UIO is presented to achieve semi-global asymp-
totic stability for largely uncertain nonlinear minimum phase sys-
tems perturbed by unmeasurable external disturbances. The pro-
posed controller requires no prior information of the disturbance
structure, and more importantly, achieves the precise and direct
cancellation. The key secret lies in the use of the proposed interval
observer-based UIO, instead of IM-based solutions (Bernard et al.,
2020; Bin et al., 2019).

(ii) The proposed controller, in which a saturation function is in-
troduced upon the estimation term and along with the high
gain feedback, is able to alleviate the transient overshoot of the
2

closed-loop trajectories such that the trajectories remain in a
given forward invariant set. Consequently, the proposed control
protocol ensures the validity of the nonlinear separation prin-
ciple (Khalil & Praly, 2014), allowing for the independence of
stability analyses for both estimators and system states.

(iii) The proposed method can easily tackle the nonlinear system with
completely unknown nonlinear functions, since the nonlinear
separation principle holds. As a result, the proposed method is
applicable to a broader class of systems, in contrast to approaches
in Cruz-Zavala et al. (2022), Mercado-Uribe and Moreno (2020),
Sanchez and Moreno (2021), which rely on an approximated
expression and homogeneous Lyapunov function for closed-loop
systems.

The remainder of the paper is organized as follows. Section 2 gives
problem formulation and some standing assumptions. In Section 3, a
high-gain-based control law is proposed, together with a novel interval-
observer-based UIO. The stability analysis is presented in Section 4.
Numerical examples are provided to illustrate the performance of the
proposed controller compared with other disturbance rejection meth-
ods Bernard et al. (2020) and Back and Shim (2008) in Section 4. The
paper is wrapped up with conclusions in Section 6.

Notations: ‖ ⋅ ‖ represents the Euclidean norm of the matrices or
vectors; For any constant matrix or vector 𝑀 ∈ R𝑚×𝑛 (R𝑚), 𝑀 > (≥
, <,≤) 0 means that all elements of 𝑀 are > (≥, <,≤) 0 respectively.
Denote 𝑀+ = max {𝑀, 0} and 𝑀− = max {−𝑀, 0}. Then obviously,
we have 𝑀 = 𝑀+ − 𝑀− and |𝑀| = 𝑀+ + 𝑀−, where |𝑀| stands
for a 𝑚 × 𝑛 matrix (𝑚 × 1 vector) formed by taking the absolute value
of every element of 𝑀 . In addition, a Metzler matrix is a square
matrix whose off-diagonal components are all non-negative. Define the
function ⌈𝛼⌋𝛾 = |𝛼|𝛾 sign(𝛼), for any 𝛾 ∈ [0, 1) and any 𝛼 ∈ R. In this
paper, the solution of discontinuous differential equations is understood
in Filippov’s definition (Filippov, 2013).

2. System description and problem formulation

2.1. System description

Consider a class of SISO nonlinear system with a well-defined rela-
tive degree 𝑟 and rewritten in the Byrnes–Isidori normal form (Isidori,
2017; Khalil, 1996):

̇ = 𝑓0(𝑧, 𝜉1, 𝜇),

𝜉̇𝑖 = 𝜉𝑖+1, 𝑖 = 1,… , 𝑟 − 1

𝜉̇𝑟 = 𝑞(𝑧, 𝜉, 𝜇) + 𝑏(𝑧, 𝜉, 𝜇)(𝑢 + 𝑑),

𝑦 = 𝜉1 (1)

with state variables 𝑧 ∈ R𝑛, 𝜉 ∶= (𝜉1,… , 𝜉𝑟) ∈ R𝑟, control input
𝑢 ∈ R, unmeasurable disturbance 𝑑 ∈ R and regulated output 𝑦 ∈ R.
The uncertain parameter vector 𝜇 is supposed to range over a given
compact set  ⊂ R𝑝. The unknown nonlinear functions 𝑓0(⋅), 𝑞(⋅), 𝑏(⋅) are
sufficiently smooth functions, with 𝑏(⋅) representing the high-frequency
gain of system (1). Without loss of generality, 𝑓0(0, 0, 𝜇) = 0 and
𝑞(0, 0, 𝜇) = 0 such that the point (𝑧, 𝜉) = (0, 0) is the equilibrium. Let
Z0 ⊂ R𝑛 and X0 ⊂ R𝑟 be any fixed compact sets. For (1), the initial
conditions 𝑧0(𝜇) ∶= 𝑧(0) and 𝜉0(𝜇) ∶= 𝜉(0) depend on 𝜇, and fulfill
(𝑧0(𝜇), 𝜉0(𝜇)) ∈ Z0 × X0 for all 𝜇 ∈  .

Systems in the form of (1) are representative in the literature
focusing on the output regulation problem, which fit in many practical
applications (Psomopoulou et al., 2015; Yang et al., 2017). As com-
monly seen in the topic of nonlinear output regulation (Back & Shim,
2008; Bernard et al., 2020; Bin et al., 2019; Isidori, Marconi, & Praly,
2012; Serrani et al., 2001), we assume the system is minimum phase,
and the sign and the bound of 𝑏(𝑧, 𝜉, 𝜇) are known. Without loss of
generality, 𝑏(𝑧, 𝜉, 𝜇) is assumed to be uniformly positive. The suggested
solution is readily adaptable to scenarios involving a negative sign. To

be specific:
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Assumption 2.1. The zero dynamics

̇ = 𝑓0(𝑧, 0, 𝜇) (2)

is locally asymptotically stable with an attraction region  satisfying
Z0 ⊂  ⊂ R𝑛.

ssumption 2.2. The high-frequency gain 𝑏(𝑧, 𝜉, 𝜇) is assumed to be
bounded away from zero and there exist two known positive constants
𝑏, 𝑏 such that

0 < 𝑏 ≤ 𝑏(𝑧, 𝜉, 𝜇) ≤ 𝑏, ∀(𝑧, 𝜉, 𝜇) ∈ R𝑛 × R𝑟 ×  . (3)

The disturbance, denoted as 𝑑(𝑡) in this context, can exhibit either
tructured or unstructured characteristics. It is worth noting that this
tudy places a particular emphasis on evaluating the effectiveness of
he proposed controller in handling unstructured external signals, as it

does not rely on any prior knowledge about the model of disturbances.
However, the bounds of disturbance and the initial condition of system
(1) are required to be known as prior, as stated in the following
assumption:

Assumption 2.3. There exist two known constant vectors 𝜉(0) and
(0) confirming to 𝜉(0) ≤ 𝜉0(𝜇) ≤ 𝜉(0) for all 𝜇 ∈  . Moreover, there

exist known positive constants 𝑑1 and 𝑑2 for the uniformly bounded
disturbance 𝑑 such that for all 𝑡 ≥ 0, |𝑑(𝑡)| ≤ 𝑑1 and |𝑑̇(𝑡)| ≤ 𝑑2.

Although Assumptions 2.2–2.3 indicate that all uncertainties are
bounded and the bounds are known, the bounds are non-conservative
in the sense that we can always select a sufficiently large boundary for a
bound term. However, given a known compact set for initial conditions,
it is regrettable to acknowledge that the regulation result is semi-global.

Remark 2.1. Note that, the nonlinear functions in (1) are unknown, in
the sense that we do not require the precise or approximated expression
(bounding functions, constant bounds) of the nonlinear functions (Cruz-
Zavala et al., 2022; Mercado-Uribe & Moreno, 2020; Sanchez & Moreno,
2021), thus enlarging the class of considered systems. ⊲

In this setting, a rough description of the robust output regulation
problem is described as: for an uncertain system (1) perturbed by
some unmeasurable disturbance 𝑑(𝑡), find a controller with the only
measurable output 𝑦(𝑡) such that the trajectories of the closed-loop
system originating from Z0 ×X0 are bounded and the regulated output
satisfies lim𝑡→∞ 𝑦(𝑡) = 0.

2.2. Problem formulation

Consistently with most of the literature (Byrnes & Isidori, 1991;
Isidori et al., 2012; Serrani et al., 2001) treating the case 𝑟 > 1, in
this work we augment the zero dynamics (2) with additional zeros to
seek semi-global regulation. To be specific, we introduce the following
coordinate change:

𝜉𝑖 ↦ 𝑒𝑖 ∶= 𝑘−(𝑖−1)𝜉𝑖, 𝑖 = 1,… , 𝑟 − 1 (4)
𝜉𝑟 ↦ 𝑒𝑟 ∶= 𝜉𝑟 + 𝑘𝑟−1𝛼0𝜉1 + 𝑘𝑟−2𝛼1𝜉2 +⋯ + 𝑘𝛼𝑟−2𝜉𝑟−1

in which 𝑘 > 1 is a sufficiently large constant and parameters 𝛼𝑖,
𝑖 = 0,… , 𝑟 − 2 are selected such that the characteristic polynominal
𝑠𝑟−1 + 𝛼𝑟−2𝑠𝑟−2 +⋯+ 𝛼0 is Hurwitz. With the coordinate change (4) and
denote 𝐞 ∶= (𝑒1,… , 𝑒𝑟−1) ∈ R𝑟−1 for simplicity, system (1) becomes

̇ = 𝑓0(𝑧, 𝑒1, 𝜇),

𝐞̇ = 𝑘𝐴𝐞 + 𝐵𝑒𝑟,

̇ 𝑟 = 𝑏(𝑧, 𝜉, 𝜇)𝑢 + 𝛿(𝑧, 𝐞, 𝑒𝑟, 𝑑, 𝜇) (5)

in which

𝐴 =
(

𝟎(𝑟−2)×1 𝐈𝑟−2
)

, 𝐵 =
(

𝟎(𝑟−2)×1
𝑟−2

)

3

−𝛼0 𝛼̄1×(𝑟−2) 1∕𝑘
with {𝛼̄}1,𝑖 = −𝛼𝑖, 𝑖 = 1,… , 𝑟−2 and the nonlinear term 𝛿(𝑧, 𝐞, 𝑒𝑟, 𝑢, 𝑑, 𝜇)
is given by

𝛿(𝑧, 𝐞, 𝑒𝑟, 𝑑,𝜇) ∶= 𝑏(𝑧, 𝜉, 𝜇)𝑑 + 𝑞(𝑧, 𝜉, 𝜇)

+ 𝑘𝑟−1𝛼0𝜉2 + 𝑘𝑟−2𝛼1𝜉3 +⋯ + 𝑘𝛼𝑟−2𝜉𝑟. (6)

However, system (5) is still not suitable for the controller design as
𝑏(𝑧, 𝜉, 𝜇) is unknown. Hence, we add and subtract a term 𝛽𝑢 to the last
equation in (5), and rewrite (5) into

̇ = 𝑓0(𝑧,𝐂𝐞𝑎, 𝜇),
𝐞̇𝑎 = 𝐀𝐞𝑎 + 𝐁𝛽𝑢 + 𝐁𝛥(𝑧, 𝐞𝑎, 𝑢, 𝑑, 𝜇),

𝑦 = 𝐂𝐞𝑎 (7)

in which 𝐞𝑎 ∶= (𝐞, 𝑒𝑟) ∈ R𝑟, 𝛽 is a positive constant, 𝛥(𝑧, 𝐞𝑎, 𝑢, 𝑑, 𝜇) is the
lumped uncertainty described by

𝛥(𝑧, 𝐞𝑎, 𝑢, 𝑑, 𝜇) = 𝛿(𝑧, 𝐞, 𝑒𝑟, 𝑑, 𝜇) + (𝑏(𝑧, 𝜉, 𝜇)−𝛽)𝑢 (8)

with 𝛿(𝑧, 𝐞, 𝑒𝑟, 𝑑, 𝜇) defined in (6), and

𝐀 =
(

𝑘𝐴 𝐵
𝟎1×(𝑟−1) 0

)

, 𝐁 =
(

0(𝑟−1)×1
1

)

,

=
(

1 𝟎1×𝑟−1
)

. (9)

Note that, when 𝑟 = 1, we do not require to take the coordinate change
as (4) in the case 𝑟 > 1. However, for the sake of compactness and
neatness, we denote 𝐞𝑎 = 𝑒𝑟 = 𝜉1 when 𝑟 = 1. Then, the form of (7)
holds for 𝑟 ≥ 1.

When all states of (7) are measurable, it is intuitive to design an
ideal control law as

𝑢∗ = −
𝑙𝑒𝑟 + 𝛥(𝑧, 𝐞𝑎, 𝑢, 𝑑, 𝜇)

𝛽
(10)

for (7), in which the second term of (10) is to compensate for the
lumped uncertainty, and the first term of (10) is designed such that
the following closed-loop system

̇ = 𝑓0(𝑧, 𝑒1),

𝐞̇ = 𝑘𝐴𝐞 + 𝐵𝑒𝑟,

̇ 𝑟 = −𝑙𝑒𝑟. (11)

is semi-globally asymptotically stable (Byrnes & Isidori, 1991, Theorem
7.2). Such a controller (10), however, is unfortunately impossible for
practical implementation since 𝑒𝑟 and 𝛥(𝑧, 𝐞𝑎, 𝑑, 𝜇) are unmeasurable.
Hence, we recast the robust output regulation problem into an observer
design problem as follows:

Problem 2.1. Suppose Assumptions 2.1–2.3 hold. Let Z0 ∈ R𝑛+𝑟−1 and
X0 ∈ R be compact sets such that (𝑧(0), 𝐞(0)) ∈ Z0 and 𝑒𝑟(0) ∈ X0. For
(7), develop an observer-based regulator with 𝑒𝑟 and 𝛥 in the form of

̂𝑟 = 𝜙1(𝑦), 𝛥 = 𝜙2(𝑦)

for some functions 𝜙1(⋅), 𝜙2(⋅) such that the following properties hold:

(i) the estimated error 𝑒𝑟 ∶= 𝑒𝑟 − 𝑒𝑟 and 𝛥 ∶= 𝛥 − 𝛥 are bounded and
lim𝑡→∞ 𝑒𝑟(𝑡) = 0, lim𝑡→∞ 𝛥(𝑡) = 0;

(ii) the closed-loop trajectories of (7) are bounded and the regulated
output satisfies lim𝑡→∞ 𝑦(𝑡) = 0.

In what follows, for the sake of clarity, we omit the augment 𝜇 when
o confusion is caused.

. Controller design

Following the structure of (10), we propose a certainty equivalent
ontrol law 𝑢 in the form of

= −
𝑙𝑒𝑟 + Sat[𝛥]

(12)

𝛽
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Fig. 1. (a) Schematic of the UIO-embedded high-gain control protocol, where estimates
𝑒𝑟 and 𝛥 are described in Sections 3.1 and 3.2 respectively. (b) The structure of the
proposed interval observer-based UIO.

in which 𝛽 defined in (7) and 𝑙 are positive parameters selected ac-
cording to (35) and (40), 𝑒𝑟, 𝛥 ∈ R will be given by a high-order
sliding model (HOSM) differentiator in Section 3.1 and a novel interval
observer-based UIO in Section 3.2 respectively. Moreover, Sat[⋅] is a
smooth ‘‘saturation function’’1 in the form of

Sat [𝑠] =

⎧

⎪

⎨

⎪

⎩

𝑠, |𝑠| ≤ 𝜗
𝑠 − sign(𝑠) (|𝑠|−𝜗)

2

2 , 𝜗 < |𝑠| < 𝜗 + 1
(𝜗 + 1

2 ) sign(𝑠), |𝑠| ≥ 𝜗 + 1
(13)

with a saturation parameter 𝜗 given by (38). Fig. 1 pictorially shows a
glance at the control protocol.

Here, along with the feedback law (12), the saturation function
Sat[⋅] is introduced upon the estimation term 𝛥 to alleviate the tran-
sient overshoot of the closed-loop trajectories such that the trajectories
remain in a given forward invariant set, which in turn ensures the exis-
tence of the solutions. Nevertheless, such a conclusion requires rigorous
proof (see the proof in Theorem 4.1). For now, we cannot exclude a
prior the finite time escape of the closed-loop trajectories (7) under
the control input (12), unless the nonlinear separation principle (Khalil &
Praly, 2014) is suitable for stabilization using the HOSM differentiator2.
Temporarily, we assume there exists a forward invariant set for system
(7), which ensures the stability analysis of the estimators and system
states can be independent. To be specific, with the initial conditions in
(7) set within the compact set Z0 × X0, we assume there exist compact
sets Z and X satisfying Z0 ⊂ Z and X0 ⊂ X such that  ∶= Z × X is
a forward invariant set for system (1), i.e., the states (𝑧, 𝐞𝑎) ∈  for
all 𝑡 ≥ 0. Under this temporary assumption, the main purpose of the
subsequent subsections is to give a systematic presentation of designing
the estimates 𝑒𝑟 and 𝛥 and then this assumption will be removed and
such a forward invariant set will be given in Section 4.

1 The function Sat[𝑠] is odd and monotonically increasing, with its
erivative satisfying 0 < Sat′[𝑠] ≤ 1.

2 In Cruz-Zavala et al. (2022), Mercado-Uribe and Moreno (2020), Sanchez
and Moreno (2021), the nonlinear functions are bounded by some known func-
tional expressions, while in our case, the nonlinear functions are completely
unknown. Thus, the nonlinear separation principle is the key proof concept to
4

our stabilization result.
3.1. Estimate of 𝑒𝑟

Recalling the definition of 𝑒𝑟 in (4), the estimate of 𝑒𝑟 is given by

̂𝑟 = 𝜉𝑟 + 𝑘𝑟−1𝛼0𝜉1 + 𝑘𝑟−2𝛼1𝜉2 +⋯ + 𝑘𝛼𝑟−2𝜉𝑟−1 (14)

here we resort to a HOSM differentiator to obtain the estimates
̂1,… , 𝜉𝑟, 𝑖 = 1,… , 𝑟. Denote 𝜉 ∶= (𝜉1,… , 𝜉𝑟) ∈ R𝑟, the estimator 𝜉 is
iven by

̇̂
𝑖 = 𝜉𝑖+1 − 𝑘𝑖𝐿

𝑖
𝑟
⌈𝜉1 − 𝑦⌋

𝑟−𝑖
𝑟 , 𝑖 = 1,… , 𝑟 − 1

̇̂𝜉𝑟 = 𝛽𝑢 − 𝑘𝑟𝐿⌈𝜉1 − 𝑦⌋
0 (15)

in which 𝑘𝑖, 𝑖 = 1,… , 𝑟 are a series of positive parameters and 𝐿 > 0 is
selected to be sufficiently large. It is explicit that 𝑒𝑟 is able to converge
to 𝑒𝑟 in a finite time, if 𝜉 ∶= 𝜉 − 𝜉 converges to zero in a finite
time, whose convergence property will be established in the following
lemma.

Lemma 3.1. Suppose that (𝑧, 𝐞𝑎) ∈  for all 𝑡 ≥ 0 and Assumption 2.3
holds. Then, for the HOSM differentiator (15), there exist a positive constant
𝐿∗ and a time instant 𝑇1 > 0 such that for all 𝐿 ≥ 𝐿∗ and parameters 𝑘𝑖,
𝑖 = 1,… , 𝑟 chosen properly, the estimated error 𝜉 converges to zero in a
finite time 𝑇1.

Proof. Subtracting the dynamics of 𝜉 in (1) from (15), it follows that

̇̃𝜉1 = 𝜉𝑖+1 − 𝑘𝑖𝐿
𝑖
𝑟
⌈𝜉1⌋

𝑟−𝑖
𝑟 , 𝑖 = 1,… , 𝑟 − 1

̇̃
𝑟 ∈ −𝑘𝑟𝐿⌈𝜉1⌋

0 + [−𝐿∗, 𝐿∗] (16)

ith 𝐿∗ ∶= 𝑏𝑑1 + max(𝑧,𝐞𝑎)∈ |𝑞(𝑧, 𝜉)| + (𝛽 + 𝑏)|𝑢| and 𝜉 = (𝜉1,… , 𝜉𝑟) ∈
𝑟. Note that, the dynamics (16) has the same structure as Levant’s

HOSM differentiator (Levant, 2003). According to Levant (2003), if the
parameter gain 𝐿 is selected as 𝐿 ≥ 𝐿∗, the gains 𝑘𝑖, 𝑖 = 1,… , 𝑟, for
instance 𝑟 = 4, can be chosen as 𝑘4 = 1.1, 𝑘3 = 1.5, 𝑘2 = 2, and 𝑘1 = 4.
Then, we employ the Lyapunov candidate function

𝑉𝜉 =
𝑟−1
∑

𝑗=1
𝛽𝑗𝑍𝑗 (𝜉𝑗 , 𝜉𝑗+1) + 𝛽𝑛

1
𝑝
|𝜉𝑟|

𝑝 (17)

roposed in Cruz-Zavala and Moreno (2019), in which 𝛽𝑖 > 0, 𝑖 =

,… , 𝑟, 𝑝 > 1, 𝑍𝑗 (𝜉𝑗 , 𝜉𝑗+1) = 𝑟𝑗
𝑝 |𝜉𝑗 |

𝑝
𝑟𝑗 − 𝜉𝑗⌈𝜉𝑗+1⌋

𝑝−𝑟𝑗
𝑟𝑗+1 + ( 𝑝−𝑟𝑗𝑝 )|𝜉𝑗+1|

𝑝
𝑟𝑗+1 ,

= 1,… , 𝑟 − 1 with 𝑟𝑖 = 𝑟 + 1 − 𝑖, 𝑖 = 1,… , 𝑟. According to Cruz-Zavala
and Moreno (2019, Theorem 1), the derivative of (17) satisfies

𝑉̇𝜉 ≤ −𝜅𝑉
𝑝−1
𝑝

𝜉
(18)

for some constant 𝜅 > 0. Separating variables and integrating inequality
(18) over the time interval 0 ≤ 𝜏 ≤ 𝑡, we obtain

𝑉 1∕𝑝
𝜉 (𝜉(𝑡)) ≤ −𝜅

𝑝
𝑡 + 𝑉 1∕𝑝

𝜉 (𝜉(0)).

onsequently, 𝑉𝜉 reaches zero in a finite time 𝑇1 ≤ 𝑇 ∗
1 ∶= 𝑝

𝜅 𝑉
1∕𝑝
𝜉

(𝜉(0)),
which implies the estimated error 𝜉 converges to zero in a finite time
𝑇1. □

3.2. Reconstruction of 𝛥

In what follows, let us proceed with the design of an interval
observer-based estimator for 𝛥 in (8), which features the finite-time
convergence property as well.

3.2.1. Interval observer design
We first design an interval observer to obtain the upper and lower

boundary estimations of the state 𝐞𝑎. Since it is difficult to directly
compute a gain vector 𝑀 ∈ R𝑟 such that 𝐀 − 𝑀𝐂 is Hurwitz and
Metzler (Raïssi, Efimov, & Zolghadri, 2012), we introduce a coordinate
change 𝐞 ↦ 𝜁 ∶= 𝑇 𝐞 , in which the selection of the invertible matrix
𝑎 𝑎
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𝑇 ∈ R𝑟×𝑟 and vector 𝑀 is given in Remark 3.1. Then, the dynamics of
𝑎 in (7) is transformed into

̇ = 𝑇𝐀𝑇 −1𝜁 + 𝑇𝐁𝛽𝑢 + 𝑇𝐁𝛥(𝑧, 𝐞𝑎, 𝑢, 𝑑),

𝑦 = 𝐂𝑇 −1𝜁. (19)

For system (19), denote 𝛥
∗

= max(𝑧,𝐞𝑎)∈ |𝛥(𝑧, 𝐞𝑎, 𝑢, 𝑑)|, an interval
observer is designed and its convergence property is given as follows:

𝜁̇ = 𝑇 (𝐀 −𝑀𝐂)𝑇 −1𝜁 + 𝑇𝐁𝛽𝑢 + 𝑇𝑀𝑦 + |𝑇𝐁|𝛥,
̇ = 𝑇 (𝐀 −𝑀𝐂)𝑇 −1𝜁 + 𝑇𝐁𝛽𝑢 + 𝑇𝑀𝑦 − |𝑇𝐁|𝛥, (20)

here 𝜁, 𝜁 ∈ R𝑟, and the parameter 𝛥 is selected such that 𝛥 ≥ 𝛥
∗
.

he initial conditions are set as 𝜁 (0) = (𝑇𝑄)+𝜉(0) − (𝑇𝑄)−𝜉(0) and
(0) = (𝑇𝑄)+𝜉(0) − (𝑇𝑄)−𝜉(0) in which 𝑄 ∈ R𝑟×𝑟 is an invertible

transformation matrix such that 𝜉 ↦ 𝐞𝑎 = 𝑄𝜉 in (4).

Lemma 3.2. Suppose that (𝑧, 𝐞𝑎) ∈  for all 𝑡 ≥ 0 and Assumption 2.3
holds. If the transformation matrix 𝑇 and the gain vector 𝑀 are selected
uch that 𝑇 (𝐀 − 𝑀𝐂)𝑇 −1 is not only Hurwitz but also Metzler, then the
ynamics of (20) satisfies 𝜁 ≤ 𝜁 ≤ 𝜁 for all 𝑡 ≥ 0. Moreover, 𝐞𝑎 in
7) satisfies 𝐞𝑎 ≤ 𝐞𝑎 ≤ 𝐞𝑎 for all 𝑡 ≥ 0 with the coordinate change as
𝐞𝑎 ∶= (𝑇 −1)+𝜁 − (𝑇 −1)−𝜁 and 𝐞𝑎 ∶= (𝑇 −1)+𝜁 − (𝑇 −1)−𝜁 .

The proof can be found in Appendix.

emark 3.1. The construction of an invertible matrix 𝑇 and a vector
such that 𝑇 (𝐀 − 𝑀𝐂)𝑇 −1 is not only Hurwitz but also Metzler

an be followed by the procedures in Efimov, Perruquetti, Raïssi, and
olghadri (2013). It can be concluded as follows:

(i) Find a Hurwitz and Metzler matrix 𝛬 ∈ R𝑟×𝑟 arbitrarily provided
that 𝛬 and 𝐀 have no common eigenvalues. Then, set 𝛬 = 𝑇 (𝐀 −
𝑀𝐂)𝑇 −1, that is equivalent to 𝑇𝐀 − 𝛬𝑇 = 𝑇𝑀𝐂.

(ii) Choose an arbitrary vector 𝑆 ∈ R𝑟, and solve the Sylvester
equation 𝑇𝐀 − 𝛬𝑇 = 𝑆𝐂 to obtain 𝑇 .

(iii) Finally, utilize the relation 𝑆 = 𝑇𝑀 and calculate 𝑀 = 𝑇 −1𝑆. ⊲

.2.2. Algebraic expression of 𝛥
Next, reposing on the preceding estimator 𝑒𝑟 in (14) and the interval

observer (20), we are ready to employ an algebraic unknown input
reconstruction method proposed in Zhu et al. (2023) to obtain the
finite-time estimator 𝛥.

From Lemma 3.2, we have 𝐞𝑎 ≤ 𝐞𝑎 ≤ 𝐞𝑎, which implies 𝑒𝑟 ≤ 𝑒𝑟 ≤ 𝑒𝑟
ith 𝑒𝑟, 𝑒𝑟 being the 𝑟th element of 𝐞𝑎 and 𝐞𝑎 respectively. Hence, one

oncludes there exists a time-varying scalar 𝜌(𝑡) satisfying 0 ≤ 𝜌 ≤ 1
such that the equation 𝑒𝑟 = 𝜌𝑒𝑟+(1 − 𝜌) 𝑒𝑟 holds for all 𝑡 ≥ 0. We rewrite
such an equation into

𝑒𝑟 = 𝜌(𝑒𝑟 − 𝑒𝑟) + 𝑒𝑟 = 𝜌𝑓1(𝜁 ) + 𝑒𝑟, (21)

in which 𝑓1(𝜁 ) ∶= 𝐁⊤|𝑇 −1
|𝜁 and 𝜁 ∶= 𝜁 −𝜁 . The second equation of (21)

follows from the fact that 𝑒𝑟 − 𝑒𝑟 = 𝐁⊤(𝐞𝑎 − 𝐞𝑎) and (𝑇 −1)+ + (𝑇 −1)− =
𝑇 −1

|.
Then, differentiating (21) gives

̇ 𝑟 = 𝜌𝑓2(𝜁 ) + 𝜌̇𝑓1(𝜁 ) + 𝑒̇𝑟, (22)

n which 𝑓2(𝜁 ) can be obtained by subtracting the dynamics of 𝜁 from
hat of 𝜁 in (20), that is

𝑓2(𝜁 ) = ̇𝑓1(𝜁 ) = 𝐁⊤|𝑇 −1
|

(

𝑇 (𝐀 −𝑀𝐂)𝑇 −1𝜁 + 2|𝑇𝐁|𝛥
)

.

Using 𝑒𝑟 = 𝐁⊤𝐞𝑎 and with the dynamics of 𝜁 and 𝜁 in (20), the dynamics
f 𝑒𝑟 is

𝑒̇𝑟 = 𝑓3(𝜁, 𝜁 , 𝑦) + 𝛽𝑢 (23)

ith

(𝜁, 𝜁 , 𝑦) ∶= 𝐁⊤
(

𝑁 𝜁 −𝑁 𝜁 +𝑀𝑦 − |𝑇 −1
||𝑇𝐁|𝛥

)

,

5

3 1 2
𝑁1 ∶= (𝑇 −1)+𝑇 (𝐀 −𝑀𝐂)𝑇 −1,

2 ∶= (𝑇 −1)−𝑇 (𝐀 −𝑀𝐂)𝑇 −1.

eanwhile, reminiscent of the dynamics of 𝑒𝑟 in (7), we have 𝑒̇𝑟 =
𝑢+𝛥(𝑧, 𝐞𝑎, 𝑢, 𝑑), that together with (22), gives the algebraic expression
f 𝛥(𝑧, 𝐞𝑎, 𝑢, 𝑑) in the form of

(𝑧, 𝐞𝑎, 𝑢, 𝑑) = 𝜌𝑓2(𝜁 ) + 𝜌̇𝑓1(𝜁 ) + 𝑓3(𝜁, 𝜁 , 𝑦). (24)

However, we are still not able to employ (24) for implementation since
the signals 𝜌, 𝜌̇ are unavailable for measurement. Instead, according to
(24), we proposed the estimator for 𝛥(𝑧, 𝐞𝑎, 𝑢, 𝑑) in (8) as

𝛥 = 𝜌̂𝑓2(𝜁 ) + ̂̇𝜌𝑓1(𝜁 ) + 𝑓3(𝜁, 𝜁 , 𝑦) (25)

in which 𝜌̂ and ̂̇𝜌 are estimates of 𝜌 and 𝜌̇ respectively, functions 𝑓𝑖(⋅), 𝑖 =
, 2, 3 are found in (21)–(23) with 𝜁, 𝜁 given in (20).

To proceed, based on (21), we can deduce that

̂ =
𝑒𝑟 − 𝑒𝑟 + 𝜖
𝑒𝑟 − 𝑒𝑟 + 𝜖

(26)

with 𝜖 = 1, if 𝑒𝑟 = 𝑒𝑟, and otherwise, 𝜖 = 0. The design of the estimator
̂̇ again relies on a HOSM differentiator in the form of

̇ 1 = 𝜓2 − 𝑘′1𝐿
′ 12
⌈𝜓1 − 𝜌̂⌋,

̇ 2 = −𝑘′2𝐿
′
⌈𝜓1 − 𝜌̂⌋

0

̂̇ = 𝜓2 (27)

where 𝑘′1, 𝑘
′
2 are positive parameters, and 𝐿′ > 0 is chosen to be

sufficiently large. The convergence property of estimated error 𝛥 = 𝛥−𝛥
is asserted by the following proposition.

Proposition 3.1. Given (𝑧, 𝐞𝑎) ∈  for all 𝑡 ≥ 0 and let Assumption 2.3
hold. Consider the estimator 𝛥 in (25) that is composed of the HOSM
differentiators in (15), (27) and interval observer in (20), there exist a
positive constant 𝐿′∗ and a time instant 𝑇2 > 𝑇1 such that for all 𝐿′ ≥ 𝐿′∗

and parameters 𝑘′1, 𝑘
′
2 selected properly, the estimated error 𝛥 converges to

zero in a finite time 𝑇2.

Proof. From (24) and (25), it follows that

𝛥 = 𝜌̃𝑓2(𝜁 ) + ̃̇𝜌𝑓1(𝜁 ) (28)

in which 𝜌̃ ∶= 𝜌̂ − 𝜌 = 𝜉𝑟+
∑𝑟−1
𝑖=1 𝑘

𝑟−𝑖𝛼𝑖−1𝜉𝑖
𝑒𝑟−𝑒𝑟+𝜖

and ̃̇𝜌 ∶= ̂̇𝜌 − 𝜌̇. The former
dynamics is governed by (16) that converges to zero in a finite time 𝑇1
while the latter one is given by

̇̃𝜓1 = 𝜓̃2 − 𝑘′1𝐿
′ 12
⌈𝜓̃1 − 𝜌̃⌋,

̇̃𝜓2 = −𝑘′2𝐿
′
⌈𝜓̃1 − 𝜌̃⌋

0 − 𝜌̈

̃̇ = 𝜓̃2 (29)

in which 𝜓̃ ∶= (𝜓̃1, 𝜓̃2) with 𝜓̃1 ∶= 𝜓1 − 𝜌 and 𝜓̃2 ∶= 𝜓2 − 𝜌̇. By
seeking second derivatives on both sides of (21), one deduces that the
boundedness of signal 𝜌̈ relies on the boundedness of the 𝑖th derivatives
of signals 𝑒𝑟, 𝑒𝑟, 𝑒𝑟, 𝑖 = 0, 1, 2. Since (𝑧, 𝐞𝑎) ∈ , 𝑏(𝑧, 𝜉) is bounded from
(3), 𝑑 is bounded under Assumption 2.3, 𝜉 is bounded from Lemma 3.1
and the bounded state 𝜉, and thanks to boundedness of Sat[⋅] in (13),
signals 𝑒𝑟, 𝑒𝑟, 𝑒𝑟 and their first derivatives are bounded. Besides, since 𝑑̇
is bounded under Assumption 2.3, ̇̂𝛥 is bounded and by the smoothness
of Sat[⋅] in (13), the second derivatives of 𝑒𝑟, 𝑒𝑟, 𝑒𝑟 are bounded as well,
which implies the boundedness of signal 𝜌̈. Again, according to Levant
(2003), if the gain 𝐿′ is selected such that 𝐿′ ≥ max(𝑧,𝐞𝑎)∈ 𝜌̈, one can
choose the gains 𝑘′2 = 1.1, 𝑘′1 = 1.5. Then, similar to the Lyapunov
candidate function constructed in (17), we consider

𝑉𝜓̃ = 𝛽′𝑍′ (𝜓̃1, 𝜓̃2) + 𝛽′
1
|𝜓̃2|

𝑝′ (30)
1 1 2 𝑝′
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in which 𝛽′1, 𝛽
′
2 > 0, 𝑝′ > 1, 𝑍′

1(𝜓̃1, 𝜓̃2) = 2
𝑝′ |𝜓̃1|

𝑝′
2 − 𝜓̃1⌈𝜓̃2⌋

𝑝′−2
3 +

( 𝑝
′−2
𝑝′ )|𝜓̃2|

𝑝′
3 . Based on Cruz-Zavala and Moreno (2019, Proposition 2),

𝜓̃ satisfies the following inequality

𝜓̃𝑖(𝑡)‖ ≤ 𝜆𝑖𝐿
′ 𝑖−12 (max

𝑡≥0
‖𝜌̃‖)

3−𝑖
2 , 𝑖 = 1, 2

ith 𝜆𝑖 ≥ 1 depending only on the gains 𝑘′𝑖 , which implies the
boundedness of 𝜓̃ and 𝜓1, 𝜓2. What is more, after the finite time 𝑇1
efined in Lemma 3.1, 𝜌̃ = 0. Then, by Cruz-Zavala and Moreno (2019,
heorem 1), the derivative of (30) satisfies

̇ 𝜓̃ ≤ −𝜅′𝑉
𝑝′−1
𝑝′

𝜓̃ (31)

or some 𝜅′ > 0 after 𝑡 ≥ 𝑇1. From (31), one can easily conclude that
fter another period, say 𝑡𝑓 ∶= 𝑝′

𝜅′ 𝑉
1∕𝑝′
𝜓̃ (𝜓̃(𝑇1)), 𝜓̃ = 0. Then, setting

2 = 𝑇 + 𝑡𝑓 , from (28) we obtain 𝛥 = 0 for all 𝑡 ≥ 𝑇2. □

emark 3.2. Most of UIO techniques (Alenezi et al., 2021; Corless &
u, 1998; Yang et al., 2022) are developed mainly for the estimation
roblem such as fault diagnosis, which requires the exact model of the
lant. We consider the class of systems in the form of (1), which satisfies
he minimum phase condition and the observer matching condition
equired for an UIO design problem. However, instead of directly es-
imating the state and disturbances, we regard the model uncertainties
nd disturbances as the lumped uncertainty to be compensated, which
akes our method robust to the model uncertainties. ⊲

emark 3.3. Consider a stabilization problem, the interval observer-
ased UIO provides the controller with a control-decoupled estimation,
hich makes it possible to introduce the unknown input reconstruction

nto the controller. On the other hand, the combination of the HOSM
ifferentiators (14), (27) renders the UIO the finite-time convergence.

. Stability analysis

The previous section has provided constructive procedures of the
stimated term 𝑒𝑟 and 𝛥 required in (12). Their convergence properties
re concluded in Lemma 3.1 and Proposition 3.1 under the temporary
ssumption that (𝑧, 𝐞𝑎) ∈ . Now, the closed-loop system (7) under the
ontrol protocol (12) is in the form of

̇ = 𝑓0(𝑧, 𝑒1), 𝐞̇ = 𝑘𝐴𝐞 + 𝐵𝑒𝑟,

̇ 𝑟 = −
𝑏(𝑧, 𝜉)
𝛽

(𝑙𝑒𝑟 + Sat[𝛥]) + 𝛿(𝑧, 𝐞, 𝑒𝑟, 𝑑). (32)

In this section, we will mathematically demonstrate the existence of
such a forward invariant set  under the condition that 𝑙 in (12) is
chosen to be sufficiently large.

Before stepping into the stability analysis of the closed-loop system,
let us turn our attention to the augmented zero dynamics

̇ 𝑎 = 𝐟0(𝑧𝑎) (33)

with 𝑧𝑎 ∶= (𝑧, 𝐞) and 𝐟0(𝑧𝑎) ∶= (𝑓0(𝑧, 𝑒1), 𝑘𝐴𝐞). Under Assumption 2.1,
the results in Byrnes and Isidori (1991), Isidori et al. (2012) show that
the origin of system (33) is uniformly semi-globally locally asymptot-
ically stable in the parameter 𝑘. For future use, let 𝑟 and 𝑟 denote
espectively the open and the closed ball of radius 𝑟 around the origin
f system (33).

emma 4.1 (Byrnes & Isidori, 1991, Theorem 7.3). Under Assump-
ion 2.1, for each positive number 0 < 𝑅 <∞, there exist positive constants
, 𝑟, 𝑘∗, and, for any 𝑘 ≥ 𝑘∗, a continuously differentiable, positive definite
unction 𝑊 (𝑧𝑎) such that

(i) the set {𝑧𝑎 ∈ R𝑛+𝑟−1 ∶ 𝑊 (𝑧𝑎) ≤ 𝑎} is compact, and contains 𝑟 in its
interior;
6

(

(ii) the derivative of 𝑊 (𝑧𝑎) along the trajectories of (33) satisfies

𝑊̇ (𝑧𝑎) ≤ −𝜃(𝑊 (𝑧𝑎)), ∀𝑧𝑎 ∈ 𝑟 (34)

for some class ∞ function 𝜃(⋅) that is dependent on the positive
parameter 𝑘.

Following Lemma 4.1, we present the main result:

heorem 4.1. Suppose Assumptions 2.1–2.3 hold. Given Z0 and X0
being the compact set, for any uniformly bounded disturbance 𝑑, there exist
positive constants 𝑘∗, 𝑙∗, 𝐿∗, 𝐿′∗, 𝜗 and a compact set  such that for all
0 < 𝛽 ≤ 𝑏, 𝑘 ≥ 𝑘∗, 𝑙 ≥ 𝑙∗, 𝐿 ≥ 𝐿∗, 𝐿′ ≥ 𝐿′∗, the trajectories of the closed-
loop system (32) originating from Z0 × X0 are bounded and the regulated
output exponentially converges to zero.

Proof. The main idea of the proof relies on the following observation
of dynamics (32): given a bounded 𝑒𝑟, if 𝑘 is chosen to be sufficiently
large, one can constrain state 𝑧𝑎 within certain compact set. On the
ther hand, one can easily see the magnitude of 𝑒𝑟 is adjustable by
ufficiently large 𝑙 given 𝛿 is a bounded term. In summary, we will

show that the tuning gains 𝑘 and 𝑙 suffice to ensure the existence of .
ext is to prove the control input 𝑢 in (12) becomes unsaturated after

he estimated errors converge to zero, then the closed-loop system is
ecovered to the stabilized system (11).

First, we define the forward invariant set  as  ∶= 𝑊 −1([0, 𝑐+1])×
𝑐+1, in which 𝑊 ∶ {𝑧𝑎 ∈ R𝑛+𝑟−1 ∶ 𝑊 (𝑧𝑎) ≤ 𝑎} → R is the Lyapunov

unction given by Lemma 4.1 and with 𝐛 ∶= |

𝑏(𝑧,𝜉)−𝛽
𝑏(𝑧,𝜉) |,

𝑐 = 1
1 − 𝐛

(|𝑒𝑟(0)| + max
𝑡≥0

|𝑒𝑟|)

ince

< 𝛽 ≤ 𝑏, (35)

one obtains 0 ≤ 𝐛 < 1, and thus 𝑐 > 0 is a valid radius such that X0 ⊂
𝑐 ∶= {𝑒𝑟 ∈ R ∶ |𝑒𝑟| ≤ 𝑐} and Z0 ⊂ 𝑊 −1([0, 𝑐]). In what follows, we will
prove the trajectories of (32) originating from Z0×X0 ⊂ 𝑊 −1([0, 𝑐])×𝑐

ill be restricted to the closed set  ∶= 𝑊 −1([0, 𝑐 + 1]) × 𝑐+1.
Recalling the form of 𝐵 in (5) and when 𝑟 > 1, the derivative of
(𝑧𝑎) along the trajectory of (32) satisfies

̇ (𝑧𝑎) ≤ −𝜃(𝑊 (𝑧𝑎)) + 𝑚1𝑘
−(𝑟−2) max

𝑡≥0
|𝑒𝑟| (36)

≤ −(1 − 𝜋)𝜃(𝑊 (𝑧𝑎)) − 𝜋𝜃(𝑊 (𝑧𝑎)) + 𝑚1𝑘
−(𝑟−2) max

𝑡≥0
|𝑒𝑟|

here 0 < 𝜋 < 1 and 𝑚1 ∶= max𝑧𝑎∈𝑊 −1([0,𝑐+1]) |
𝜕𝑊 (𝑧𝑎)
𝜕𝑧𝑎

| independent of 𝑘.
Since 𝜃(⋅) is dependent on 𝑘, there exists a 𝑘∗ such that for 𝑘 ≥ 𝑘∗ > 0,
ne obtains 𝑚2 ≤ 𝑐 + 1, in which 𝑚2 ∶= 𝜃−1(𝑚𝑘−(𝑘−2) max𝑡≥0 |𝑒𝑟|∕𝜋).
ence, reverting back to (36), we derive
̇ (𝑧𝑎) ≤ −(1 − 𝜋)𝜃(𝑊 (𝑧𝑎)),

𝑧𝑎 ∈ {𝑧𝑎 ∈ R𝑛+𝑟−1 ∶ 𝑚2 ≤ 𝑊 (𝑧𝑎) ≤ 𝑐 + 1}, (37)

hich implies 𝑧𝑎 is constrained within the compact set 𝑊 −1([0, 𝑐 + 1]).
hen 𝑟 = 1, this can be achieved if the input 𝑒𝑟 is sufficiently small.
Next, we show that with a sufficiently large 𝑙, 𝑒𝑟 remains in 𝐵𝑐+1.

o this end, set

= max
(𝑧𝑎 ,𝑒𝑟)∈

𝐛𝑙|𝑒𝑟| +
𝛽

𝑏(𝑧, 𝜉)
|𝛿(𝑧, 𝐞, 𝑒𝑟, 𝑑)| (38)

with 𝛿(⋅) defined in (6). Now, consider the dynamics of 𝑒𝑟 in (32) and
eplace Sat[𝛥] with (38), it follows that

𝑒𝑟(𝑡)| ≤ 𝑒−
𝑏(⋅)
𝛽 𝑙𝑡

|𝑒𝑟(0)| (39)

+ (1 − 𝑒−
𝑏(⋅)
𝛽 𝑙𝑡)

[

max
𝑡≥0

|𝑒𝑟| + max
(𝑧𝑎 ,𝑒𝑟)∈

𝐛|𝑒𝑟| +
2𝛽
𝑏(⋅)𝑙

|𝛿(⋅)|
]

here we omit the augments in 𝑏(⋅), 𝛿(⋅) and 𝛥(⋅) for simplicity. Taking
he maximum values of both sides of the inequality (39), it holds:

max |𝑒𝑟|≤ |𝑒𝑟(0)|+max |𝑒𝑟|+ max 𝐛|𝑒𝑟|+
2𝛽

|𝛿(⋅)|

𝑧𝑎 ,𝑒𝑟)∈ 𝑡≥0 (𝑧𝑎 ,𝑒𝑟)∈ 𝑏(⋅)𝑙
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which yields

max
(𝑧𝑎 ,𝑒𝑟)∈

|𝑒𝑟| ≤ 𝑐 +
2𝛽

𝑏(⋅)(1 − 𝐛)𝑙
max

(𝑧𝑎 ,𝑒𝑟)∈
|𝛿(⋅)|.

Hence, select

𝑙 ≥ 𝑙∗ =
2𝛽max(𝑧𝑎 ,𝑒𝑟)∈ |𝛿(⋅)|

𝑏(⋅)(1 − 𝐛)
(40)

uch that 2𝛽
𝑏(⋅)(1−𝐛)𝑙 max(𝑧𝑎 ,𝑒𝑟)∈ |𝛿(⋅)| ≤ 1, which implies that

|𝑒𝑟(𝑡)| ≤ max
(𝑧𝑎 ,𝑒𝑟)∈

|𝑒𝑟| ≤ 𝑐 + 1. (41)

hus, with a sufficiently large 𝑙, the input of the augmented zero
ynamics, 𝑒𝑟, can be sufficiently small. From (37) and (41), it turns
ut that, with a consequence of the choice of 𝛽, 𝑘, 𝑙, 𝜗, the trajectories
f (32) originating from Z0 × X0 remain in .

The last thing is to show the convergence property of the regulated
output. Since we have proven (𝑧, 𝐞𝑎) ∈ ,∀𝑡 ≥ 0, it is shown in
Lemmas 3.1 and 3.1 that there exist 𝐿∗, 𝐿′∗ and a finite time instant 𝑇
such that for all 𝐿 ≥ 𝐿∗, 𝐿′ ≥ 𝐿′∗, one derives 𝑒𝑟 = 0 and 𝛥 = 0, ∀𝑡 ≥ 𝑇 .

earing in mind the definitions of 𝛥(⋅) and 𝑢 in (12) and (24), we obtain
(⋅) = −(𝑏(⋅)−𝛽) 𝑙

𝑏(⋅) 𝑒𝑟+
𝛽
𝑏(⋅) 𝛿(⋅) after 𝑡 ≥ 𝑇 . Thanks to the saturation value

set in (38), it implies that Sat[𝛥(⋅)] = 𝛥(⋅) after 𝑡 ≥ 𝑇 and the closed-loop
system (32) becomes (11). Therefore, the targeted closed-loop system
is asymptotically stable. Besides, the regulated output 𝑦 = 𝑒1 = 𝜉1
exponentially converges to zero, which ends the proof. □

Remark 4.1. The expression for the radius of the forward invariant
set is given by 𝑐 = 1

1−𝐛 (|𝑒𝑟(0)| + max𝑡≥0 |𝑒𝑟|), where the radius depends
n the extent of uncertainties, including initial conditions of the state
nd estimated error. Moreover, in the case of large uncertainty in the
onlinear function 𝛿(⋅), it becomes essential to design a larger value for
such that 2𝛽

𝑏(⋅)(1−𝐛)𝑙 max(𝑧𝑎 ,𝑒𝑟)∈ |𝛿(⋅)| ≤ 1. Consequently, the selection of
𝑙 depends on the amount and quality of the available information on
the system and disturbance. In turn, if uncertainties are substantial, a
higher gain 𝑙 should be chosen accordingly, and vice versa. ⊲

5. Numerical example

In this section, we first conduct a numerical experiment to validate
the proposed method. Then, in order to demonstrate the effectiveness of
the proposed method, comparative studies with the recently proposed
adaptive IM-based method in Bernard et al. (2020) and a nonlinear
DOB-based controller in Back and Shim (2008) are carried out. All the
simulations are conducted under ode45 with the identical simulation
precision of 1 × 10−3.

5.1. Case I ∶ Exact rejection of unknown disturbance

The system is in the form of

̇ = −2𝑧 + 𝑦 + 2𝜙𝑤1,

𝑦̇ = 𝑤2
2 + 𝑧𝑦 + 𝑢

with 𝑦 to be regulated to zero, and a disturbance 𝑑 = 𝑤2
2 generated by

an exosystem of

𝑤̇1 = 𝑤2,

𝑤̇2 = (1 −𝑤2
1)𝑤2 −𝑤1.

We consider 𝜙 = 0 in the first case. Assume that the initial condition
of regulated output 𝑦 ranges over a known compact set {𝑦 ∈ R ∶ 0 ≤
𝑦 ≤ 12} and the upper boundaries of 𝑑 and 𝑑̇ are known, here |𝑑(𝑡)| ≤ 8
and |𝑑̇(𝑡)| ≤ 18, which is depicted in Fig. 2. Under the above settings, a
streamlined procedure to construct the proposed UIO-based controller
7

is as follows. (
Fig. 2. Time history of the disturbance 𝑑(𝑡) and its derivative 𝑑̇(𝑡).

Fig. 3. Time history of regulated output 𝑦(𝑡).

Fig. 4. Time history of disturbance 𝑑(𝑡) and control input 𝑢(𝑡).

First, set 𝛽 = 0.5 such that 𝐛 = 0.5. A sufficiently large parameter 𝑙
s chosen to be 𝑙 = 5. The compact set  is set as  = {(𝑧, 𝑦) ∈ R2 ∶
𝑧| ≤ 2, |𝑦| ≤ 12}. Hence, using the fact that

(𝑧, 𝑦, 𝑑) = 𝑑 + 𝑧𝑦,

rom (38) it can be verified that

max
𝑧,𝑦)∈

𝐛𝑙|𝑦| + 𝛽|𝑑 + 𝑧𝑦| ≤ 46.

ere, we take the saturation value as 𝜗 = 50. The controller (12) is in
he form of

= −10𝑦 − 2 Sat[𝛥]

here the estimate 𝛥 is provided by (25), which is composed of the
OSM differentiator (27) and the interval observer (20). As for the

ormer, a sufficiently large 𝐿′ is chosen to be 𝐿′ = 20 and set the
urning gains 𝑘′1 = 1.5, 𝑘′2 = 1.1. As for the latter, the gain vector 𝑀
nd the transformation matrix 𝑇 are selected according to Remark 3.1
s 𝑀 = 4 and 𝑇 = 0.25 such that 𝑇 (𝐀 −𝑀𝐂)𝑇 −1 = −4 is Hurwitz and
etzler.

After the above parameters are fixed, we conduct the simulation
ith initial conditions (𝑧(0), 𝑦(0)) = (1, 10), (𝑤1(0), 𝑤2(0)) = (0, 1),

𝜁 (0), 𝜁(0)) = (20, 0).
𝜓1(0), 𝜓2(0)) = (0.5, 0), and (
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Fig. 5. Time history of regulated output 𝑦(𝑡) with the adaptive IM-based
method (Bernard et al., 2020), the proposed method and the DOB-based method in Back
and Shim (2008).

Figs. 3–4 show the results of Case I. Remarkably, the regulated
output 𝑦 converges to zero with a notable transient performance and
the control input 𝑢 completely reconstructs the disturbance 𝑑 in a rather
short time, which shows the effectiveness of the proposed method.

5.2. Case II ∶ Comparison with Other Disturbance Rejection Methods
Bernard et al. (2020) and Back and Shim (2008)

In the second case, we set 𝜙 = 1, thus the same system as Bernard
et al. (2020) is considered here for the sake of fair comparison. With
the same exosystem, all the tuning parameters and initial conditions
remain the same, except for the initial condition of the exosystem set
as (𝑤1(0), 𝑤2(0)) = (0, 4).

For compared methods, under the same preconditions, the gains
n the IM-based method (Bernard et al., 2020) are set as 𝛺 = 10−6I,
= 0.05, 𝑘 = 5, 𝐿 = 15 with the saturation value set at 250. Finally,

the tuning parameters in the nonlinear DOB-based controller (Back &
Shim, 2008) are chosen as 𝜌 = 0.1 and 𝜏 = 0.01 with the saturation
value taken at 40.

The results are shown in Fig. 5. For the adaptive IM-based method
(Bernard et al., 2020), the residual error exists in the regulated output
due to the ability of the identifier. Specifically, when the exosystem
cannot be exactly identified by the selected identifier, only approximate
regulation is achieved. Furthermore, the selection of the least-square
identifier with a low forgetting factor 𝐩 yields a longer convergence
time. On the other hand, the steady-state error of the DOB-based
method (Back & Shim, 2008) highly relies on the choice of the cut-
off frequency 𝜏. Distinct from these two approaches, our proposed
method features the exact compensation of the disturbance and does
not require tending some parameters to infinity or zero. Additionally,
if the relative degree of the system is high, the observer gain in Bernard
et al. (2020) and Back and Shim (2008) grows rapidly, which poses a
challenge in the numerical implementation. Despite the residual error
in the output shown in Figs. 3 and 5, it can be significantly improved
with the higher simulation precision. In summary, under the proposed
controller, the controller system maintains robust stability, and the
regulation performance is significantly improved compared with that
of the design in Bernard et al. (2020) and in Back and Shim (2008).

6. Conclusions

In this paper, with a novel unknown input observer-based con-
troller, exponential regulation of the regulated output for uncertain
minimum phase systems has been achieved. Through a delicately de-
signed coordinate change, we cast the output regulation problem as the
problem of estimating the unknown input. Different from the existing
robust control techniques that only achieve the approximate regulation,
the exact unknown input observer-based controller enables the origi-
8

nal system to recover a disturbance-free asymptotically stable system.
Then, the regulated output exponentially converges to zero in a semi-
global setting, which is theoretically proven and numerically verified.
Moreover, with comparisons to both internal model-based method and
disturbance observer-based approach in a numerical experiment, the
proposed method has the advantage of a satisfactory convergence rate
and robustness to the model uncertainties and external disturbances. In
future work, the extension to multivariable systems and the removal of
the minimum phase requirement will be our research directions.
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Appendix. Proof of Lemma 3.2

To this end, two necessary lemmas are introduced as follows:

Lemma A.1 (Farina & Rinaldi, 2011). Suppose that the matrix 𝐴 ∈ R𝑛×𝑛
is a Metzler and Hurwitz matrix, besides 𝑑𝑥(𝑡) ∈ R𝑛, 𝑑𝑥(𝑡) ≥ 0, 𝑡 ≥ 0, then
the solution of the dynamics 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝑑𝑥(𝑡) satisfies 𝑥(𝑡) ≥ 0 for all
𝑡 ≥ 0 if 𝑥(0) ≥ 0.

Lemma A.2 (Mazenc, Dinh, & Niculescu, 2014). Suppose that the vector
variables 𝑥(𝑡) ∈ R𝑛, 𝑥(𝑡) ∈ R𝑛 and 𝑥(𝑡) ∈ R𝑛 satisfies 𝑥(𝑡) ≤ 𝑥(𝑡) ≤ 𝑥(𝑡), then
or any constant matrix 𝑀 ∈ R𝑚×𝑛, we have 𝑀+𝑥(𝑡) −𝑀−𝑥(𝑡) ≤𝑀𝑥(𝑡) ≤

+𝑥(𝑡) −𝑀−𝑥(𝑡).

Define 𝜁𝑒 ∶= 𝜁 − 𝜁 and 𝜁
𝑒
∶= 𝜁 − 𝜁 . From (19) and (20), it follows

that

𝜁̇𝑒 = 𝑇 (𝐀 −𝑀𝐂)𝑇 −1𝜁𝑒 + |𝑇𝐁|𝛥 − 𝑇𝐁𝛥(𝑧, 𝐞𝑎, 𝑢, 𝑑),

𝜁̇
𝑒
= 𝑇 (𝐀 −𝑀𝐂)𝑇 −1𝜁

𝑒
+ 𝑇𝐁𝛥(𝑧, 𝐞𝑎, 𝑢, 𝑑) + |𝑇𝐁|𝛥.

By definition of |𝑇𝐁| = (𝑇𝐁)+ + (𝑇𝐁)−, we have

|𝑇𝐁|𝛥 = (𝑇𝐁)+𝛥 − (𝑇𝐁)−(−𝛥) = −(𝑇𝐁)+(−𝛥) + (𝑇𝐁)−𝛥.

Hence, by Lemma A.2, we obtain

|𝑇𝐁|𝛥 − 𝑇𝐁𝛥(𝑧, 𝐞𝑎, 𝑢, 𝑑) = (𝑇𝐁)+𝛥 − (𝑇𝐁)−(−𝛥)
− 𝑇𝐁𝛥(𝑧, 𝐞𝑎, 𝑢, 𝑑) ≥ 0.

imilarly, 𝑇𝐁𝛥(𝑧, 𝐞𝑎, 𝑢, 𝑑) + |𝑇𝐁|𝛥 ≥ 0. Under Assumption 2.3 that
(0) ≤ 𝜉(0) ≤ 𝜉(0), we again utilize Lemma A.2 and 𝜁 (0) = 𝑇𝑄𝜉(0),

thus 𝜁 (0) ≤ 𝜁 (0) ≤ 𝜁 (0). Therefore, based on Lemma A.1, from the
dynamics of 𝜁

𝑒
, 𝜁𝑒, if the matrix 𝑇 (𝐀−𝑀𝐂)𝑇 −1 is a Metzler and Hurwitz

atrix, we can conclude that 𝜁
𝑒
≥ 0 and 𝜁𝑒 ≥ 0 for all 𝑡 ≥ 0. Thus,

𝜁 ≤ 𝜁 ≤ 𝜁 for all 𝑡 ≥ 0. Finally, employing the relation 𝐞𝑎 = 𝑇 −1𝜁 and
emma A.2, it follows that 𝐞𝑎 ≤ 𝐞𝑎 ≤ 𝐞𝑎 for all 𝑡 ≥ 0 with 𝐞𝑎, 𝐞𝑎 defined

in Lemma 3.2. □
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